

IV Semester M.Sc. Degree Examination, June 2016 (CBCS) MATHEMATICS M401 T : Measure and Integration

Tim	e:	3 Hours Max. Marks :	70
	11	nstructions: I) Answer any five full questions. II) All questions carry equal marks.	
ï.	a)	Show that the Lebesgue outer measure of an interval is its length	7
	b)	Let (E _n) be a countable collection of sets. Then prove that	
		$m^*\left(\bigcup_{n} E_n\right) \leq \sum_{n} m^*\left(E_n\right)$	7
2.	a)	Define G_n -sets. Let E be any set. Then prove that i) Given $\epsilon > 0$, there exists an open set $O \supset E$ such that $m^*(O) < m^*(E) + \epsilon$. ii) There exists a G_n -set $G \supset E$ such that $m^*(E) = m^*(G)$.	7
	b)	Define Lebesgue measurable set. If E has the outer measure zero, then prove that E is measurable, hence show that every subset of E is measurable.	7
3	a)	If f and g are two measurable functions defined on the same domain then prove that f + g, fg, f² and f are measurable.	8
	b)	Let I and g be two functions defined on the same domain E such that $f=g$ a.e. and g is measurable, then prove that f is measurable.	6
4.	a)	State and prove Egoroff's theorem.	8
	b)	Let (f_n) be a sequence of measurable functions which converges to f a.e. on E , then prove that $(f_n) \to f$ on E .	6

- 5. a) Define a simple function. Let \(\psi \) and \(\psi \) be simple functions which vanish outside a set of finite measure. Then prove the following:
 - i) \(\a \phi + \phi \psi = a \left(+ \phi \right) \psi, a, b = \mathbb{R}.
 - If \$\phi ≥ \psi \ \a.e. \then \$\lambda \in \psi\$.

b) Prove that a bounded function defined on a measurable set E of finite measure is Lebesgue integrable if and only if it is measurable.

- c) If f and g are non-negative measurable functions then prove :
 - i) $\int_{\mathbb{R}} cf = c \iint_{\mathbb{R}} c \in \mathbb{R}$. ii) $\int_{\mathbb{R}} f + g = \int_{\mathbb{R}} f + \int_{\mathbb{R}} g$

$$ii) \ \underset{E}{\int } f + g = \underset{E}{\int } f + \underset{E}{\int } g$$

6. a) If I is an integrable function on a measurable set E. then prove that [I] is also integrable.

4

b) State and prove Lebesgue's dominated convergence theorem.

6

 c) Define a function of bounded variation. Prove that a monotonic function on [a, b] is of bounded variation.

a) Define a Vitali cover. Establish the Vitali covering lemma.

8

b) Let f be an increasing real-valued function defined on [a, b]. Then prove that f is differentiable a.e. Also prove that f' is measurable and $\int f'(x)dx \le f(b) - f(a)$.

6

a) Prove that LP spaces are normed linear spaces for 1 ≤ p < ∞.

b) State and prove Riesz-Fischer theorem.